Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-36743451

RESUMEN

The presentation of neoantigens by HLA-I is essential for the recognition of tumor cells by cytotoxic T cells. Transcriptionally, HLA-I expression is regulated by interferon-dependent activation of JAK/STAT signaling. Accordingly, mutations that inactivate this pathway are one of the main causes of resistance to cancer immunotherapies. Recent evidences indicate that HLA-I expression can be induced independently of IFN-signaling by the innate immune response. In this context, we performed an image-based screen to evaluate how more than 5,000 chemicals, including all medically available drugs plus many others in advanced preclinical development, influence HLA-I expression in STAT1-deficient cells. Our screening failed to identify any significant hits, suggesting that drug-dependent modulation of HLA-I expression is strictly dependent on IFN-signaling.

2.
Gut Microbes ; 14(1): 2045046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35258405

RESUMEN

Memory-like responses in innate immune cells confer nonspecific protection against secondary exposures. A number of microbial agents have been found to induce enhanced or diminished recall responses in innate cells, however, studies investigating the ability of probiotic bacteria to trigger such effects are lacking. Here, we show that priming of human monocytes with a secretome from the gut probiotic bacterium Limosilactobacillus (L.) reuteri induces a mixed secondary response phenotype in monocyte-derived dendritic cells (mo-DCs), with a strong IL-6 and IL-1ß response but low TNFα, IL-23 and IL-27 secretion. Instead, blood DC priming with L. reuteri-secretome resembles a tolerant state upon secondary exposure. A similar pattern was found in conventional and gut-like (retinoic acid exposed) DCs, although retinoic acid hampered TNFα and IL-6 production and enrichment of histone modifications in L. reuteri-secretome primed mo-DC cultures. Further, we show that the memory-like phenotype of mo-DCs, induced by priming stimuli, is important for subsequent T helper (Th) cell differentiation pathways and might determine the inflammatory nature of Th cells. We also show enhanced recall responses characterized by robust inflammatory cytokines and lactate production in the gut-like mo-DCs derived from ß-glucan primed monocytes. Such responses were accompanied with enriched histone modifications at the promoter of genes associated with a trained phenotype in myeloid cells. Altogether, we demonstrate that a gut commensal-derived secretome prompts recall responses in human DCs which differ from that induced by classical training agents such as ß-glucan. Our results could be beneficial for future therapeutic interventions where T cell responses are needed to be modulated.


Asunto(s)
Microbioma Gastrointestinal , Limosilactobacillus reuteri , beta-Glucanos , Diferenciación Celular , Citocinas , Células Dendríticas , Humanos , Interleucina-6 , Monocitos , Fenotipo , Tretinoina/farmacología , Factor de Necrosis Tumoral alfa/farmacología
3.
PLoS Genet ; 17(7): e1009656, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252089

RESUMEN

Extra-chromosomal genetic elements are important drivers of evolutionary transformations and ecological adaptations in prokaryotes with their evolutionary success often depending on their 'utility' to the host. Examples are plasmids encoding antibiotic resistance genes, which are known to proliferate in the presence of antibiotics. Plasmids carrying an essential host function are recognized as permanent residents in their host. Essential plasmids have been reported in several taxa where they often encode essential metabolic functions; nonetheless, their evolution remains poorly understood. Here we show that essential genes are rarely encoded on plasmids; evolving essential plasmids in Escherichia coli we further find that acquisition of an essential chromosomal gene by a plasmid can lead to plasmid extinction. A comparative genomics analysis of Escherichia isolates reveals few plasmid-encoded essential genes, yet these are often integrated into plasmid-related functions; an example is the GroEL/GroES chaperonin. Experimental evolution of a chaperonin-encoding plasmid shows that the acquisition of an essential gene reduces plasmid fitness regardless of the stability of plasmid inheritance. Our results suggest that essential plasmid emergence leads to a dose effect caused by gene redundancy. The detrimental effect of essential gene acquisition on plasmid inheritance constitutes a barrier for plasmid-mediated lateral gene transfer and supplies a mechanistic understanding for the rarity of essential genes in extra-chromosomal genetic elements.


Asunto(s)
Evolución Molecular , Genes Esenciales/genética , Plásmidos/genética , Evolución Biológica , Cromosomas/genética , Escherichia coli/genética , Transferencia de Gen Horizontal/genética , Genes Esenciales/fisiología , Genómica/métodos , Plásmidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...